
Urban Radiance Fields

Konstantinos Rematas1 Andrew Liu1 Pratul Srinivasan1 Jonathan Barron1

Andrea Tagliasacchi1,2 Thomas Funkhouser1 Vittorio Ferrari1

1 Google Research 2University of Toronto

Abstract

The goal of this work is to perform 3D reconstruction
and novel view synthesis from data captured by scanning
platforms commonly deployed for world mapping in urban
outdoor environments (e.g., Street View). Given a sequence
of posed RGB images and lidar sweeps acquired by cameras
and scanners moving through an outdoor scene, we produce
a model from which 3D surfaces can be extracted and novel
RGB images can be synthesized. Our approach extends Neu-
ral Radiance Fields, which has been demonstrated to syn-
thesize realistic novel images for small scenes in controlled
settings, with new methods for leveraging asynchronously
captured lidar data, for addressing exposure variation be-
tween captured images, and for leveraging predicted image
segmentations to supervise densities on rays pointing at
the sky. Each of these three extensions provides significant
performance improvements in experiments on Street View
data. Our system produces state-of-the-art 3D surface re-
constructions and synthesizes higher quality novel views in
comparison to both traditional methods (e.g. COLMAP) and
recent neural representations (e.g. Mip-NeRF).

1. Introduction
In this work we investigate neural scene representations

for world mapping, with the goal of performing 3D recon-
struction and novel view synthesis from data commonly
captured by mapping platforms such as Street View [23].
This setting features large outdoor scenes, with many build-
ings and other objects, natural illumination from the sun, and
is generally less controlled than previous work [42, 43]. We
focus on street-level mapping: a person carrying a camera
rig with a lidar sensor placed on a backpack walking through
a city. The camera captures panoramas of the street scene
while the lidar sensor reconstructs a 3D point cloud.

Street-level mapping is challenging for neural representa-
tions, as the area of interest covers a large area, usually hun-
dreds of square meters. This significantly differs from previ-
ous works, which largely focus on either synthetic data [49,

Novel views 3D reconstructionInput

Figure 1. Overview – Given a set of panoramas and lidar obser-
vations from an urban setting, we estimate a neural representation
that can be used for novel view synthesis and accurate 3D recon-
struction.

56] or small regions of real scenes [8, 10, 42, 43, 64, 72].
Moreover, the scenes contain a large variety of objects, both
in terms of geometry and appearance (e.g. buildings, cars,
signs, trees, vegetation). The camera locations are biased
towards walking patterns (e.g. walking a straight line) with-
out focusing on any particular part of the scene. This results
in parts of the scene being observed by only a small num-
ber of cameras, in contrast to other datasets [34, 43, 50, 57]
which capture scenes uniformly with a large number of cam-
eras. Furthermore, the sky is visible in most street scenes,
introducing an infinitely distant element that behaves differ-
ently than the solid structures near the cameras. The images
typically have highly varying exposures as the cameras use
auto-exposure, and the illumination brightness varies de-
pending on the sun’s visibility and position. Combined with
auto white balance, this results in the same structure having
different colors when observed from different cameras. Fi-
nally, the lidar points have lower resolution in distant parts
of the scene, and are even completely absent in some parts
of the scene (e.g., for shiny or transparent surfaces).

In this paper we extend the popular NeRF [42] model in
three ways to tailor it to the unique features of the Street
View setting and to tackle the challenges above. First, we
incorporate lidar information in addition to RGB signals.
By carefully fusing these two modalities, we can compen-
sate for the sparsity of viewpoints in such large scale and
complex scenes. We introduce a series of lidar-based losses
that allow accurate surface estimation both for solid struc-
tures like buildings and for volumetric formations such as

1

trees/vegetation. Second, we automatically segment sky pix-
els and define a separate dome-like structure to provide a
well-defined supervision signal for camera rays pointing at
the sky. Third, our model automatically compensates for
varying exposure by estimating an affine color transforma-
tion for each camera.

During experiments with real world data from Street
View [23], we find that these three NeRF extensions signifi-
cantly improve over the state-of-the-art both in the quality
of synthesized novel views (+19% PSNR over [39]) and
3D surface reconstructions (+0.35 F-score over [30]). We
encourage the reader to view the supplementary material for
more results and animated visualizations.

2. Related Works

Novel View Synthesis. The 3D reconstruction of urban en-
vironments has been studied for decades [45]. Most prior
work represents the geometry of a city with raw point clouds,
acquired either from structure-from-motion [2] or lidar sen-
sors [26], and provide only a sampled, partial representation
from which it is difficult to render high quality novel views.
Traditional surface reconstruction methods aggregate the raw
data into explicit 3D scene representations, such as textured
meshes [52] or primitive shapes [14]. These methods gener-
ally utilize hand-crafted reconstruction algorithms that work
best for scenes with large, diffuse surfaces — a property
that does not hold for most urban environments. Others re-
construct volumetric representations, such as voxels [55],
octrees [65], or multi-plane images [18, 58, 76]. However,
these approaches usually have limited resolution or suffer
due to the large storage requirements of discretized volumes.

NeRF. Neural Radiance Fields represent a scene with a
multilayer perceptron (MLP) that maps a 3D position and
direction to a density and radiance that can be used to syn-
thesize arbitrary novel views with volumetric rendering [42].
Typically this representation is trained per scene with a loss
measuring photometric consistency with respect to a collec-
tion of posed RGB images. If the input images are dense and
diverse enough, the scene is small enough, the camera poses
are accurate enough, the camera exposure parameters are
constant, and the scene is static, the original NeRF model can
synthesize remarkably detailed and accurate novel views.

NeRF in vitro. Many researchers have investigated exten-
sions to NeRF to overcome some of its limitations [15].
Mip-NeRF [4] proposed a scale-aware scene representation
based on conical frustrums instead of rays to compensate
for blurring and aliasing artifacts. NSVF [38] reduced the
rendering time of radiance fields using an octree represen-
tation. Another line of research focused on radiance field
estimation from single images [28, 51, 72]. Radiance fields
are also used for surface extraction, either using an SDF rep-

resentation [66,70,71] or solid surfaces [46]. However, most
of this work has been demonstrated only for input images
that are synthetic or captured in a laboratory setting (“in
vitro”) with complete control over lighting, viewpoint, and
scene composition, and thus cannot be used directly in real-
world applications where sensors move along constrained
trajectories.

NeRF in situ. Some research has been directed towards us-
ing NeRF-like models for 3D reconstruction and novel view
synthesis from images captured in natural environments (“in
situ”) [19, 35, 60, 69, 75]. NeRF++ [73] investigates the
parameterization of unbounded scenes. Other works have
addressed short video inputs [19] or monocular input [35].
Methods like [30, 68] use the 3D points from SfM to guide
the training of the radiance field. In work more similar to
ours, IMAP [60] performs real-time SLAM from RGB-D
images captured with a hand-held camera moving through
indoor scenes from the Replica Dataset [59]. The work of
Azinović et al. [3] performs surface reconstruction of indoor
environments, also using images from an RGB-D camera.
ObjectNeRF [69] and SemanticNeRF [75] perform novel
view synthesis and semantic segmentation from RGB-D
videos of the ScanNet dataset [13]. These systems have been
demonstrated for RGB-D data captured in indoor scenes,
which do not exhibit most of the issues we address.

NeRF for world mapping. There has been very little
work on using NeRF in outdoor mapping applications.
Neural Scene Graphs [48] consider novel view synthesis
from images provided with the KITTI Dataset [21], and
NeRF in the Wild (NeRF-W) [39] does the same for in-
ternet photo collections. Neither system leverages lidar
data, which is available in most outdoor mapping plat-
forms [6, 7, 20, 22, 25, 32, 36, 61, 63] nor do they attempt
to extract 3D surface reconstructions. In addition to this new
functionality, in comparison to NeRF-W we also provide
improved methods for handling exposure variations and the
challenge posed by the sky.

2.1. Review of Neural Radiance Fields

Neural radiance fields fit a coordinate-based neural net-
work with parameters θ to describe a volumetric scene from
a set of posed images {Ii}Ni=1; i.e. with known intrinsic and
extrinsic calibration. To render an image, NeRF uses ray
marching to sample the volumetric radiance field and com-
posites the sampled density and color to render the incoming
radiance of a particular ray, and supervises the training of θ
by an L2 photometric reconstruction loss:

Lrgb(θ) =
∑
i

Er∼Ii

[∥∥C(r)−Cgt
i (r)

∥∥2
2

]
(1)

where Cgt
i (r) is the ground truth color of ray r passing

through a pixel in image i, and the color C(r) is computed

2

by integrating the weighted volumetric radiance within the
ray’s near and far bounds tn and tf :

C(r) =

∫ tf

tn

w(t) · c(t)︸︷︷︸
radiance

dt (2)

and r(t) = o + td represents a ray with camera origin o
oriented as d, with volume rendering integration weights:

w(t) = exp

(
−
∫ t

tn

σ(s) ds

)
︸ ︷︷ ︸

visibility of r(t) from o

· σ(t)︸︷︷︸
density at r(t)

(3)

while the intermediate features z(t), the volumetric den-
sity σ(t) and view-dependent radiance fields c(t) are stored
within the parameters θ of fully connected neural networks:

z(t) = z(r(t);θ) : R3 → Rz (4)

σ(t) = σ(z(t);θ) : Rz → R+ (5)

c(t) = c(z(t),d;θ) : Rz × R3 → R3 (6)

The discretization of the integrals in (2) and (3) follows [44].
As the scenes used in this work are observed at different dis-
tances, we use the integrated positional encoding proposed in
mip-NeRF [4] for 3D points r(t) and the original positional
encoding [42] for the viewing direction d.

3. Data
This paper investigates how to reconstruct 3D surfaces

and synthesize novel views of urban spaces from data com-
monly collected for autonomous driving and world mapping
applications. Though many suitable data sources are avail-
able, we focus our experiments on Trekker data from Street
View [23], which was acquired from Google with permission
via personal communication.

Street View data is particularly interesting because it has
been captured for large parts of the world, and thus provides
opportunities for visualization and geometry analysis appli-
cations at scale. However, Street View differs from other
3D scene reconstruction datasets such as Phototourism [57]
in several crucial ways. First, the number of images cap-
tured for a particular scene is significantly smaller than those
found for popular landmarks. This results in limited diversity
of viewpoints. Second these panoramic captures are often
accompanied by lidar sensors which provide accurate, but
sparse, depth information.

Image Data. Street View imagery is collected by multiple
fisheye cameras attached to a trekker capturing rig. Each
camera is calibrated with estimated intrinsic parameters and
poses relative to the trekker. Images are collected from
each camera at approximately 2Hz as the trekker moves
through the world. Images are posed automatically within a

global coordinate system using structure-from-motion and
GPS information, allowing us to assemble camera rays with
origin o and direction d corresponding to each pixel.

Real world urban scenes have moving objects whose po-
sitions change as images are captured over time (pedestrians,
cars, bicyclists, etc). If unaddressed, these objects can re-
sult in trained NeRFs that produce ghosting and blurring.
Because dynamics are often tied to semantics, we run a
pre-trained semantic segmentation model [9] on every im-
age, and then mask pixels of people, which are the most
prominent moving category.

Lidar Data. In addition to imaging sensors, the trekker
contains time-of-flight VLP16 lidar sensors which actively
emit light to measure distances to surfaces. Unlike the imag-
ing data which represents dense samples of incoming light,
the lidar data is a swept sequence of timestamped 3D line
segments represented by an origin and termination position.
A single lidar segment indicates that during the timestamp,
the space traversed by an emitted ray did not intersect an
opaque surface. We make a simplifying assumption that
most surfaces detected by lidar are stationary like buildings
and roads, so we can ignore the timestamp information and
assume that empty space is empty throughout the entire cap-
ture. This allows us to model lidar rays similar to camera
rays, with origin o`, direction d`, and termination distances
z`.

4. Method
We define a Urban Radiance Field (URF) with scene-level

neural network parameters θ as well as per-image exposure
parameters {βi}. Given the image and lidar data for a scene,
we optimize a URF by minimizing the following loss:

arg min
θ,{βi}

Lrgb(θ, {βi}) + Lseg(θ)︸ ︷︷ ︸
Sec. 4.1

+Ldepth(θ) + Lsight(θ)︸ ︷︷ ︸
Sec. 4.2

4.1. Photometric-based Losses

The photometric loss term is similar to the original NeRF
equation (1), but ours also depends on estimated per-image
exposure parameters {βi}:

Lrgb(θ, {βi}) =
∑
i

Er∼Ii
[
||C(r;βi)−Cgt

i (r)||22
]

(7)

We modify the volume rendering equation in two ways, each
described in its corresponding sub-section:

C(r;βi) =

∫ tf

tn

w(t) ·Γ(βi)︸ ︷︷ ︸
Sec. B.2

· c(t) dt+ csky(d)︸ ︷︷ ︸
Sec. 4.1.2

(8)

4.1.1 Exposure compensation

Images acquired by mapping systems are usually captured
with auto white balance and auto exposure which compli-

3

cates the computation ofLrgb in (1). Previous work addresses
this issue using latent codes, learned separately for each
image, that map image-independent scene radiance to an
image-dependent radiance [3,40,53]. One shortcoming with
such an approach is that modeling exposure variations with
a per-image latent code is overparameterized as it allows the
latent codes to compensate for non-exposure related errors.
Instead, in (8) we perform an affine mapping of the radiance
predicted by the shared network where the affine transforma-
tion is a 3x3 matrix decoded from the per-image latent code
βi ∈ RB :

Γ(βi) = Γ(βi;θ) : RB → R3×3 (9)

This mapping models white balance and exposure varia-
tions with a more restrictive function, and thus is less likely
to cause unwanted entanglement when the scene radiance
parameters θ and the exposure mappings β are optimized
jointly.

4.1.2 Sky modeling

Outdoor scenes contain sky regions where rays never inter-
sect any opaque surfaces, and thus the NeRF model gets a
weak supervisory signal in those regions. To address this
issue, our rendering model includes a spherical radiance (en-
vironment) map represented as a coordinate-based neural
network, similar to the radiance map used in GANcraft [24]

csky(d) = csky(d;θ) : R3 → R3 (10)

to provide a direction-dependent background color for those
regions. To modulate which rays utilize the environment
map, we run a pre-trained semantic segmentation model
for each image to detect pixels likely to be sky: Si=S(Ii),
where Si(r)=1 if the ray r goes through a sky pixel in image
i. We then use the sky mask to define an additional loss that
encourages at all point samples along rays through sky pixels
to have zero density:

Lseg(θ) = Er∼Ii

[
Si(r)

∫ tf

tn

w(t)2 dt

]
(11)

Note that whenever Si(r)=1, this will force the csky to ex-
plain the pixel for ray r in (8).

4.2. Lidar losses

Since lidar data is available in our data, we use it to su-
pervise training of the model. We are given a collection of L
lidar samples D={(o`,d`, z`)L`=1}, each corresponding to
a ray r(z)=o` + zd`, and the associated 3D measurement
p`=r(z`). Inspired by classical works in 3D reconstruc-
tion [27], we break the losses into two different types: 1©
supervising the expected depth value, and 2© supervising the

free space along the line-of-sight from the lidar sensor to the
observed position.

Expected depth. We start by supervising the expected
depth ẑ from a volumetric rendering process (i.e. optical
depth [30]) to match the depth of the lidar measurement:

Ldepth(θ) = Er∼D
[
(ẑ − z)2

]
ẑ =

∫ tf

tn

w(t) · t dt (12)

Line-of-sight priors. For points that are observed by a lidar
sensor, a reasonable assumption is that a measured point
p corresponds to a location on a non-transparent surface,
and that atmospheric media does not contribute to the color
measured w.r.t. a lidar ray r` = r(z`). Hence, we expect
that the radiance is concentrated at a single point along the
ray, and therefore that a single point is responsible for the
observed color. In other words, with reference to (2):

C(r`) ≡ c(r`) iff w(t) = δ(t) (13)

where δ(.) is the continuous Dirac function. We can convert
this constraint via the penalty method into a loss:

Lsight(θ) = Er∼D

[∫ tf

tn

(w(t)− δ(z))2 dt
]

(14)

and to make this numerically tractable, we can replace the
Dirac with a kernel Kε(x) that integrates to one (i.e. a
distribution) that has a bounded domain parameterized by ε.
We choose Kε(x)=N (0, (ε/3)2), with N being a truncated
Gaussian, and then split the ray integral into three intervals
with three corresponding losses:

Lsight(θ) = Lempty(θ)︸ ︷︷ ︸
t∈[tn,z−ε]

+ Lnear(θ)︸ ︷︷ ︸
t∈[z−ε,z+ε]

+ Ldist(θ)︸ ︷︷ ︸
t∈[z+ε,tf]

(15)

The second term in the breakdown above will be:

Lnear(θ) = Er∼D

[∫ z+ε

z−ε
(w(t)−Kε(t− z))2 dt

]
(16)

which encourages the representation to increase volumetric
density in the neighborhood of p, thereby allowing training
to converge more quickly. Note that, as Kε(x) has bounded
support in [z − ε, z + ε], the first term can be simplified to:

Lempty(θ) = Er∼D

[∫ z−ε

tn

w(t)2 dt

]
(17)

which requires that the portion of space between the ray
origin and the lidar point p (i.e. the line-of-sight) does not
contain any 3D surface. This line of sight information has
been a key ingredient in “volume carving” techniques [12,
27, 41].The last term has a similar form:

Ldist(θ) = Er∼D

[∫ tf

z+ε

w(t)2 dt

]
, (18)

4

however, because this term’s only purpose is to ensure that
w(t) sums to one, and because NeRF’s volume rendering
equation only requires that w(t) sums to no more than one,
this term can be safely dropped during training. Note that
the choice of a smooth kernel Kε(x) is critical, as it guaran-
tees continuity across the transition between losses at z − ε.
Finally, selecting a suitable ε plays an important role in the
reconstruction accuracy. We discovered that employing a
small ε hinders performance, especially in the early train-
ing phases, and note that a similar behavior has also been
observed in somewhat related methods that anneal the band-
width of importance sampling over time [47]. In our network,
we adopt an exponential decay strategy for ε, and ablate this
decision in supplementary material.

5. Experimental Evaluation
We ran a series of experiments to evaluate our model and

to test whether the proposed new ideas enable more accurate
renderings of novel views and improve the quality of 3D
geometric reconstructions.

5.1. Evaluation Protocol

The Street View dataset. We collected 10 scenes from
cities around the globe covering six continents. Each scene
corresponds to a trekker capture of approximately 20 panora-
mas (each containing 7 images) and 6 million lidar points
on average. Each scene covers hundreds of square meters
and represents a different urban environment. For the quan-
titative analysis we report average metrics over the scenes
Taipei, Zurich, New York, Rome. We split this overall dataset
in two different ways in a training and a test set, giving rise
to the two experimental settings below.

Setting 1: Held-out Viewpoints. We split each scene into
train and test based on the camera locations. We randomly
select 20% simultaneous image captures from our trekker
rig and use them as test views. As lidar sensors operate in
a continuous fashion, we select all lidar rays whose origins
are close to a test camera’s location as the lidar test set.

Setting 2: Held-out Buildings. We also want to evalu-
ate how well our model reconstructs entire 3D surfaces for
which we do not have any lidar. To simulate this, we manu-
ally select a building and remove all lidar rays terminating
on its surface; these removed rays form the test set. We use
the remaining lidar rays and all images as the training set.

5.2. Baseline Methods

We perform comparisons with the following baselines 1.
For each of them, we adjust the model parameters (number
of rays, samples, etc) to be comparable:

1We experimented also with NerfingMVS [68], but the results were
much lower than the other methods.

Lidar PSNR ↑ SSIM ↑ LPIPS ↓
NeRF [42] � 14.791 0.477 0.569
NeRF-W [40] � 17.156 0.455 0.620
Mip-NeRF [4] � 16.987 0.516 0.458
DS-NeRF [30] �X 15.178 0.500 0.537
Ours w/o lidar � 19.638 0.541 0.447
Ours �X 20.421 0.563 0.409

Table 1. Novel view synthesis – We report standard image render-
ing metrics on test views of selected scenes.

• NeRF [42] – We use the JAX [5] version, which is a su-
perior re-implementation [16] of the original NeRF paper.
This method operates on images only.

• Mip-NeRF [4] – an extension of NeRF that uses integrated
positional encoding. It also operates only on images and
is the method that we build upon.

• DS-NeRF [30] – this paper used 3D keypoints from an
SfM reconstruction to supervise the NeRF density; here
we adjust it to use lidar points (the same we also use).

• NeRF-W [39] – NeRF in the Wild has shown impressive
results on outdoor scenes and can handle images with
different exposures. It operates on images only.

5.3. Novel View Synthesis Results

We first consider novel view synthesis by training and
then rendering novel views in the Held-out Viewpoints setting
(Tab. 1). We evaluate the rendered test views using three
standard metrics: PSNR, SSIM, and LPIPS [74]. Similar
to the protocol of [39], we evaluate on the right part of the
image, as the left is used for test-time optimization of the
exposure latent codes for our method and NeRF-W.

Starting from the base model Mip-NeRF, we achieve
significant improvements by adding our exposure and sky
modeling (second-last row). Additionally, including lidar
information improves the renderings even further (last row).
The methods we compare against are challenged by Street
View data due to its sparsity in terms of viewpoints and
exposure variations between images. We outperform all of
them, including NeRF-W which was designed for outdoor
scenes, and DS-NeRF, which exploits lidar.

In Fig. 2, we show rendered results on test views from
various models. Mip-NeRF suffers from its inability to han-
dle exposure variations, resulting in floating artifacts that
attempt to explain the differences in exposure between train-
ing views. Next we find that our full model shows signifi-
cantly sharper images when using lidar due to geometrically
accurate surface placements and suppression of erroneous,
semi-transparent density “floaters”. The improvement is
more visible in the distant areas like the arcade in Rome and
the covered sidewalk in Taipei.

5

Mip-NeRF Ours w/o lidar Ours GT

Ta
ip

ei
N

ew
 Y

or
k

Zu
ric

h
Ro

m
e

Mip-NeRF Ours w/o lidar Ours GTDS-NeRFDS-NeRF

Figure 2. Qualitative novel view synthesis – We visualize the output of our model against the ground truth and different methods. Our full
model is able to generate more accurate renderings that do not suffer from exposure artifacts and floating elements.

5.4. 3D Reconstruction Results

Next we evaluate the quality of the recovered 3D scene
structure, both in terms of depth estimates and point clouds.

Depth estimates. As shown in Fig. 3, our full model is
able to use the sparse lidar supervision to reconstruct signifi-
cantly finer depth detail compared to using only the dense
pixel supervision. In particular, we reconstruct crisp depth
values even for some surfaces that are difficult to capture,
like cars and window frames. Note that the lidar depthmaps
are estimated using depth-aware splatting and the missing
regions are due to the lidar scanning pattern. For quantitative
evaluation, we use the set of test lidar rays’ origin o` and
direction d` to cast rays and ask the model to estimate the
expected termination distance ẑ by sampling its volumetric
density function and accumulating its transmittance, similar
to Eq. (12). We compare this model estimate to the ground
truth termination distance z and report the average error in
meters. We also report accuracy as the number of test rays es-
timated within 0.1 meters of their ground truth (Acc@0.1m).
Looking at the results in Tab. 2, we find that our model
outperforms all baselines on both metrics (by ∼3×).

Point clouds. We generate 3D point clouds directly from the
ray parameters and depth estimates. Given a ray origin o`,
direction d` and ground truth termination distance z, the cor-
responding 3D point is p` = o` + zd`. By iterating over all
the test lidar rays we estimate the ground truth point cloud of
the scene. We do the same for the estimated depth ẑ, result-
ing in the predicted point cloud. We compare the two clouds
using Chamfer Distance and F-score (threshold = 0.1 me-
ters). As Tab. 2 shows, our model has the best performance
across all metrics in both held-out settings. The difference is
large even over DS-NeRF, that uses lidar, indicating that both
our exposure/sky modeling and our combination of losses
are important to achieve high accuracy.

Mesh reconstruction. Here we use our full model to gen-
erate dense point clouds by casting one ray for each pixel
in each training camera, and estimating depth for it as de-
scribed above. For comparison, we obtain a point cloud with

COLMAP [54] estimated by running MVS using the camera
parameters provided with the dataset. We also compare to
the point cloud defined by the lidar points (the training points
that we also feed to our method). For each method, we then
reconstruct 3D meshes using Poisson Surface Reconstruc-
tion [31].

Fig. 4 shows the meshes derived from our point clouds,
from COLMAP and from lidar. Our method is able to esti-
mate accurately the underlying geometry, whereas COLMAP
loses fine details and lidar produces artifacts due to limited
sampling resolution. Our method also provides denser cover-
age than the raw lidar, since we also use images. These pro-
vide higher resolution observations in some regions (e.g., the
cars in the image on the left) and broader coverage (e.g., the
missing region of the building on the right), as the scanning
pattern of the lidar is far narrower than the image panoramas.
Fig. 5 shows more mesh reconstructions from our method.
We can accurately reconstruct fine details in areas hundreds
of square meters large.

5.5. Ablation Studies

Effects of individual components. Tab. 3 studies the effect
of each model component. As we add exposure compen-
sation and sky modeling we see consistent improvements
in all 3D reconstruction metrics (second and third rows).
When incorporating lidar, the best performing setup is when
using all proposed losses at the same time (Sec. 4.2). The
strongest contribution comes from the near-surface loss, as
when its not activated the performance drops considerably.
The empty-space loss, which is primarily used to suppress
floating semi-transparent density (“floaters”), harms perfor-
mance when used without the near-surface loss. This indi-
cates that our decaying margin strategy is suitable way to
gather the benefits of both losses. We further analyze this
behaviour in the supplementary material.

Effect of exposure handling. Finally, we investigate the
effect of our affine color transformation. An alternative is
to provide the exposure code βi directly as an input to the
network, as done in NeRF-W [39] and [3]. However, in

6

Ta
ip

ei
N

ew
 Y

or
k

Zu
ric

h
Ro

m
e

Input Mip-NeRF Ours w/o lidar Ours Input Mip-NeRF Ours w/o lidar Ours LidarLidar

Figure 3. Qualitative depthmaps – We visualize the expected depth for our model against other methods and variations. Our full model is
able to estimate precisely the extent of the scene, including thin structures such as tree trunks, window frames, etc.

Held-out Viewpoints Held-out Building
Lidar Avg Error (m) ↓ Acc↑ CD↓ F↑ Avg Error (m) ↓ Acc↑ CD↓ F↑

NeRF [42] � 1.582 0.264 3.045 0.528 1.423 0.274 2.857 0.535
NeRF-W [40] � 3.663 0.144 6.165 0.372 1.348 0.207 4.054 0.552
Mip-NeRF [4] � 1.596 0.133 2.812 0.363 1.417 0.132 2.508 0.427
DS-NeRF [30] �X 1.502 0.259 2.571 0.526 1.367 0.294 2.720 0.558
Ours �X 0.463 0.742 0.272 0.880 0.770 0.363 2.312 0.687

Table 2. Reconstruction evaluation – We compare various NeRF based approaches in two experimental settings (Held-out Viewpoints,
Held-out Buildings). We report two depth estimation metrics (Average Error and Accuracy) and two point cloud metrics (Chamfer Distance
CD, and F-score). See main text for details.

CO
LM

A
P

Li
da

r
O
ur
s

Figure 4. Surface Reconstruction – We show the surface recon-
struction returned by different approaches. Our method is able to
provide dense and accurate depth estimates, which in turn allow
detailed mesh reconstructions.

this way the exposure code can explain arbitrary appearance
elements, and not necessarily those due to exposure/white
balance. Fig. 6 illustrates the appearance changes when mod-
ifying the latent codes on the Rome scene. For our affine
model this translate into rendering the same structure with
different color tones, while the direct approach generates
visible artifacts. These affect also 3D reconstruction perfor-

Melbourne Rome

Taipei

Tokyo Seattle

Toledo

Figure 5. Additional Reconstructions – Visualization of extracted
meshes for several large scale urban scenes.

mance: our affine model results in F-score of 0.47 vs 0.36
for the direct approach, These artifacts can be reduced by
limiting the power of the latent codes to affect rendering, e.g.
by providing βi to later layer of the network, or reducing
their dimensionality (similar to observations in [73] regard-
ing the viewing direction d). See the supplementary material
for more details.

7

Γ L
se

g

L
de

pt
h

L
em

pt
y

L
ne

ar

Avg↓ Acc↑ CD↓ F↑
� � � � � 1.596 0.133 2.812 0.363
�X � � � � 1.226 0.184 1.771 0.424
�X �X � � � 1.109 0.233 1.190 0.471
�X �X �X � � 0.811 0.284 0.782 0.545
�X �X �X �X � 1.136 0.093 0.536 0.306
�X �X � �X �X 0.633 0.736 0.726 0.878
�X �X �X �X �X 0.463 0.742 0.272 0.880

Table 3. Ablation study – We investigate the effect of the individual
components of our model, from the image-based elements (top part)
to the lidar losses (bottom part). The first row corresponds to the
baseline Mip-NeRF [4] model.

A
�
ne

D
ire

ct

Figure 6. Exposure modifications – We visualize the effect of
changing exposure codes using our affine color model and a direct
approach. The affine model performs a global color transformation,
enforcing the disentanglement between exposure codes and scene
radiance.

Seattle São Paulo Toledo

TokyoCape Town Sydney

Figure 7. Novel views – After training our model for a particular
scene, we are able to estimate novel views for a new camera with
different intrinsics and trajectory path than those used for training.

Figure 8. Colored mesh – Using our model we can also accurately
reconstruct a colored scene mesh.

5.6. Qualitative results
A benefits of having precise 3D reconstruction as part

of a NeRF-based model is that it enables great flexibility
in placing a virtual camera for novel view synthesis. In
Fig. 7 we visualize rendered images and depth maps by our
model from camera positions substantially different from
those along the trekkers acquisition path (on average 1.7
meters away from the closest training camera).

In Sec. 5.4 we showed how we can estimate accurately
the scene geometry as meshes. In Fig. 8, we illustrate how
we can use our model to query the colors of the mesh vertices,
resulting in precise textured meshes that are compatible with
traditional rendering software. Note that the exposure is
already compensated, while traditional pipelines need to
perform screened Poisson image integration to compensate
for the color variation [17],
5.7. Limitations

Our system has limitations. First, it assumes that good
camera parameters are given through an SfM pipeline, but
they are sometimes noisy in practice — a joint optimization
of the camera parameters along with the network parameters
may improve the reconstructions for those cases [37, 67].
Second, it has been demonstrated only for snippets of data
cut out of longer scanning sequences — models learned
from multiple snippets would have to be stitched together to
produce a coherent model of the spatially continuous world.
These limitations, plus failure cases and potential negative
societal impacts, are discussed further in the supplemental
material.

6. Conclusion
We present a system for 3D reconstruction and novel view

synthesis from data captured by mobile scanning platforms
in urban environments. Our approach extends recent work
on Neural Radiance Fields with new ideas to leverage asyn-
chronously captured lidar data, to account for differences
in exposures between captured images, and to leverage pre-
dicted image segmentations to supervise the density of rays
pointing towards the sky. Experimental results on Street
View data demonstrate that each of these three ideas sig-
nificantly improves performance on its own, and that they
combine to produce better synthesized novel views (+19%
PSNR over [39]) and 3D surface reconstructions (+0.35 F-
score over [30]). We hope this paper inspires future work to
take further steps towards deploying coordinate-based neural
networks in outdoor mapping applications.

8

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org. 12

[2] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian
Simon, Brian Curless, Steven M Seitz, and Richard Szeliski.
Building rome in a day. Communications of the ACM, 2011.
2

[3] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,
Matthias Nießner, and Justus Thies. Neural rgb-d surface
reconstruction. arXiv, 2021. 2, 4, 6, 12

[4] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-NeRF: A multiscale representation for anti-aliasing neu-
ral radiance fields. ICCV, 2021. 2, 3, 5, 7, 8, 12

[5] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. 5

[6] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gian-
carlo Baldan, and Oscar Beijbom. nuScenes: A multimodal
dataset for autonomous driving. arXiv:1903.11027, 2019. 2

[7] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet
Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter Carr,
Simon Lucey, Deva Ramanan, et al. Argoverse: 3d tracking
and forecasting with rich maps. CVPR, 2019. 2

[8] Anpei Chen and Zexiang Xu. MVSNeRF: Fast Generalizable
Radiance Field Reconstruction From Multi-View Stereo. In
ICCV, October 2021. 1

[9] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous sep-
arable convolution for semantic image segmentation. ECCV,
2018. 3

[10] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard
Pons-Moll. Stereo radiance fields (srf): Learning view syn-
thesis for sparse views of novel scenes. CVPR, 2021. 1

[11] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 13

[12] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. SIGGRAPH,
1996. 4

[13] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-

annotated 3d reconstructions of indoor scenes. CVPR, 2017.
2

[14] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Mod-
eling and rendering architecture from photographs: A hybrid
geometry-and image-based approach. SIGGRAPH, 1996. 2

[15] Frank Dellaert and Yen-Chen Lin. Neural volume rendering:
Nerf and beyond. CoRR, abs/2101.05204, 2021. 2

[16] Boyang Deng, Jonathan T. Barron, and Pratul P. Srinivasan.
JaxNeRF: an efficient JAX implementation of NeRF, 2020. 5

[17] Arnaud Dessein, William AP Smith, Richard C Wilson, and
Edwin R Hancock. Seamless texture stitching on a 3d mesh
by poisson blending in patches. ICIP, 2014. 8

[18] John Flynn, Ivan Neulander, James Philbin, and Noah Snavely.
Deepstereo: Learning to predict new views from the world’s
imagery. CVPR, 2016. 2

[19] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.
Dynamic view synthesis from dynamic monocular video.
CVPR, 2021. 2

[20] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 2013. 2

[21] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. CVPR, 2012. 2

[22] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi, Xavier
Ricou, Rupesh Durgesh, Andrew S. Chung, Lorenz Hauswald,
Viet Hoang Pham, Maximilian Mühlegg, Sebastian Dorn,
Tiffany Fernandez, Martin Jänicke, Sudesh Mirashi, Chi-
ragkumar Savani, Martin Sturm, Oleksandr Vorobiov, Martin
Oelker, Sebastian Garreis, and Peter Schuberth. A2D2: Audi
Autonomous Driving Dataset, 2020. 2

[23] Google. Street view, 2007. www.google.com/streetview/. 1,
2, 3

[24] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu.
GANcraft: Unsupervised 3D Neural Rendering of Minecraft
Worlds. ICCV, 2021. 4

[25] Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao,
Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang.
The apolloscape dataset for autonomous driving. CVPR Work-
shops, 2018. 2

[26] Veli Ilci and Charles Toth. High definition 3d map creation
using gnss/imu/lidar sensor integration to support autonomous
vehicle navigation. Sensors, 2020. 2

[27] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
et al. Kinectfusion: real-time 3d reconstruction and interac-
tion using a moving depth camera. UIST, 2011. 4

[28] Wongbong Jang and Lourdes Agapito. CodeNeRF: Disentan-
gled Neural Radiance Fields for Object Categories. In ICCV,
October 2021. 2

[29] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc
Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hag-
mann, C. Richard Ho, Doug Hogberg, John Hu, Robert

9

Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Ja-
worski, Alexander Kaplan, Harshit Khaitan, Daniel Kille-
brew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Mag-
giore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Sev-
ern, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan
Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-
datacenter performance analysis of a tensor processing unit.
SIGARCH Comput. Archit. News, 45(2), 2017. 12

[30] Jun-Yan Zhu Kangle Deng, Andrew Liu and Deva Ramanan.
Depth-supervised nerf: Fewer views and faster training for
free. arXiv:2107.02791, 2021. 2, 4, 5, 7, 8

[31] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Pois-
son surface reconstruction. SGP, 2006. 6

[32] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni,
A. Ferreira, M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari,
S. Shah, A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky,
W. Jiang, and V. Shet. Lyft level 5 perception dataset 2020.
https://level5.lyft.com/dataset/, 2019. 2

[33] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 12

[34] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM TOG, 2017. 1

[35] Jiaxin Li and Zijian Feng. MINE: Towards Continuous Depth
MPI With NeRF for Novel View Synthesis. In ICCV, October
2021. 2

[36] Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360: A novel
dataset and benchmarks for urban scene understanding in 2d
and 3d. arXiv.org, 2109.13410, 2021. 2

[37] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon
Lucey. BARF: Bundle-Adjusting Neural Radiance Fields. In
ICCV, October 2021. 8

[38] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Sua, and
Christian Theobalt. Neural Sparse Voxel Fields. In Adv.
Neural Inform. Process. Syst., 2020. 2

[39] Ricardo Martin-Brualla, Noha Radwan, Mehdi Sajjadi,
Jonathan Barron, Alexey Dosovitskiy, and Daniel Duckworth.
NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections. In CVPR, 2021. 2, 5, 6, 8, 13

[40] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Saj-
jadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel
Duckworth. NeRF in the Wild: Neural Radiance Fields for
Unconstrained Photo Collections. CVPR, 2021. 4, 5, 7

[41] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J
Gortler, and Leonard McMillan. Image-based visual hulls.
SIGGRAPH, 2000. 4

[42] Ben Mildenhall, Pratul Srinivasan, Matthew Tancik, Jonathan
Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis. In
ECCV, pages 405–421. Springer, 2020. 1, 2, 3, 5, 7, 12

[43] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines. ACM Transactions
on Graphics (TOG), 2019. 1

[44] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. ECCV, 2020. 3

[45] Przemyslaw Musialski, Peter Wonka, Daniel G Aliaga,
Michael Wimmer, Luc Van Gool, and Werner Purgathofer. A
survey of urban reconstruction. Computer graphics forum,
2013. 2

[46] Michael Oechsle, Songyou Peng, and Andreas Geiger.
UNISURF: Unifying Neural Implicit Surfaces and Radiance
Fields for Multi-View Reconstruction. In ICCV, October
2021. 2

[47] Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radiance fields
for multi-view reconstruction. ICCV, 2021. 5

[48] Julian Ost, Fahim Mannan, Nils Thürey, Julian Knodt, and
Felix Heide. Neural Scene Graphs for Dynamic Scenes. In
CVPR, pages 2856–2865, June 2021. 2

[49] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. CVPR,
2019. 1

[50] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon objects in 3d: Large-scale learning and evaluation of
real-life 3d category reconstruction. International Conference
on Computer Vision, 2021. 1

[51] Konstantinos Rematas, Ricardo Martin-Brualla, and Vittorio
Ferrari. ShaRF: Shape-conditioned Radiance Fields from a
Single View. In ICML, 2021. 2

[52] Andrea Romanoni, Daniele Fiorenti, and Matteo Matteucci.
Mesh-based 3d textured urban mapping. IROS, 2017. 2

[53] Darius Rückert, Linus Franke, and Marc Stamminger. Adop:
Approximate differentiable one-pixel point rendering. arXiv,
2021. 4

[54] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for unstruc-
tured multi-view stereo. ECCV, 2016. 6

[55] Inwook Shim, Yungeun Choe, and Myung Jin Chung. 3d map-
ping in urban environment using geometric featured voxel.
URAI, 2011. 2

[56] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.
Scene representation networks: Continuous 3d-structure-
aware neural scene representations. NeurIPS, 2019. 1

[57] Noah Snavely, Steven Seitz, and Richard Szeliski. Photo
tourism: exploring photo collections. ACM TOG, 2006. 1, 3

[58] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron, Ravi
Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the bound-
aries of view extrapolation with multiplane images. CVPR,
2019. 2

[59] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal, Carl

10

https://level5.lyft.com/dataset/

Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian
Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kim-
berly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham,
Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Batra,
Hauke M. Strasdat, Renzo De Nardi, Michael Goesele, Steven
Lovegrove, and Richard Newcombe. The Replica dataset: A
digital replica of indoor spaces. arXiv:1906.05797, 2019. 2

[60] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew Davison.
iMAP: Implicit Mapping and Positioning in Real-Time. In
ICCV, October 2021. 2

[61] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,
Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Et-
tinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,
Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov.
Scalability in perception for autonomous driving: Waymo
open dataset, 2019. 2

[62] three.js. three.js, 2015. 13
[63] Guofeng Tong, Yong Li, Dong Chen, Qi Sun, Wei Cao, and

Guiqiu Xiang. Cspc-dataset: New lidar point cloud dataset
and benchmark for large-scale scene semantic segmentation.
IEEE Access, 2020. 2

[64] Alex Trevithick and Bo Yang. GRF: Learning a General
Radiance Field for 3D Scene Representation and Rendering.
In ICCV, October 2021. 1

[65] Linh Truong-Hong and Debra F Laefer. Octree-based, auto-
matic building facade generation from lidar data. Computer-
Aided Design, 2014. 2

[66] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
NeurIPS, 2021. 2

[67] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen,
and Victor Adrian Prisacariu. NeRF–: Neural Ra-
diance Fields Without Known Camera Parameters.
https://arxiv.org/abs/2102.07064, 2021. 8

[68] Yi Wei. NerfingMVS: Guided Optimization of Neural Radi-
ance Fields for Indoor Multi-View Stereo. In ICCV, October
2021. 2, 5

[69] Bangbang Yang. Learning Object-Compositional Neural Ra-
diance Field for Editable Scene Rendering. In ICCV, October
2021. 2

[70] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. arXiv:2106.12052,
2021. 2

[71] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Ronan Basri, and Yaron Lipman. Multiview Neu-
ral Surface Reconstruction by Disentangling Geometry and
Appearance. In Adv. Neural Inform. Process. Syst., 2020. 2

[72] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural Radiance Fields from One or Few Images.
In CVPR, 2021. 1, 2

[73] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv:2010.07492, 2020. 2, 7, 13

[74] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. CVPR, 2018. 5

[75] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-
drew Davison. In-Place Scene Labelling and Understanding
with Implicit Scene Representation. In ICCV, October 2021.
2

[76] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo Magnification: Learning View
Synthesis using Multiplane Images. In Siggraph, 2018. 2

11

URF: Urban Radiance Fields

Supplementary Material

The following supplemental material contains additional
implementation details, ablation studies and qualitative re-
sults.

A. Additional Implementation Details
A.1. Network architecture

(x, y, z)

(dx, dy, dz)

exposure code
(one per image)

sky color

color

density

A�ne Color
Transformation

Exposure

Radiance �eld

Sky

,

+* =

�nal
color

Figure 9. Network architecture

Our network architecture is illustrated in Fig. 9 and has
three components. The first component is the neural radiance
field network, which is similar to the original NeRF [42]. It
consists of a series of fully connected layers of width 256
that take as input the 3D location of a point x, y, z and the
viewing direction dx, dy, dz and output the RGB color and
the density at that point. The second component is the sky
network, which takes as an input the direction dx, dy, dz of
a ray pointing at a sky point, and outputs its color. Finally,
the third component is an exposure compensation network
that takes as an input an exposure latent code and estimates
the affine transformation to be applied to the color values
output by the radiance field network. There is a different
affine transformation per image. This compensates for the
different exposures across input images. All three network
are trained jointly so that the final colors output by the model
will match the pixel colors in the input images.

A.2. Training Protocol

We train a separate network for each baseline model (Sec.
5.2) and each variant of our model, applies to each scene.
Every network is trained with the same protocol, detailed
here. We use a TPU v2 architecture with 128 cores [29] using
Tensorflow 2 [1]. We used the Adam optimizer [33] with a
learning rate scheduler that included two stages. The warm
up stage lasts 50 epochs, with the learning rate starting at
0.0005 and growing linearly until 0.005. After warm up, the
main stage lasts 500 epochs, with the learning rate starting at
0.005 and then decaying exponentially with exponent 0.98.

The ray batch size was set to 2048 per core and the total
training time was about one day per network.

For ray sampling, we use a stratified strategy where the
intervals are evenly spaced in log scale, and we sample 1024
samples per ray. We did not perform hierarchical sampling.
Each batch contains rays randomly sampled from all images
(and similarly for the lidar points)

The 3D location of a point is described using integrated
positional encoding [4] with L = 10 frequencies. For the
viewing direction we use the original positional encoding
representation with 4 frequencies.

B. Additional Ablation Studies
B.1. Effect of margin ε

Avg Error↓ CD↓ Acc↑ F↑
Fixed 1.007 2.195 0.814 0.871
Stepwise 0.776 1.818 0.849 0.905
Linear 0.238 0.508 0.903 0.961
Exponential 0.249 0.863 0.901 0.966

Table 4. Margin decay (ε) – We evaluate different decay strategies
for the margin ε during training in the Rome scene. The margin
controls the contribution of the lidar losses Lnear and Lempty. Hav-
ing a fixed margin results in lower performance, while gradually
decreasing it performs the best.

As we observed in Sec. 5.5 of the main paper, the empty-
space loss can actually decrease 3D reconstruction perfor-
mance as it introduces a strong preference for empty space.
Using the near-surface loss, which is complementary to
empty-space by construction, alleviates this effect. In Tab. 4
we vary the margin ε in Eq. (16) and Eq. (17) during training
using different strategies: Fixed: keep a constant margin
throughout training (as in [3]); Stepwise: start with a large
margin (thus only the near-surface loss is activated) and af-
ter N = 50 epochs the margin suddenly becomes small;
Linear/exponential: gradually reduce the margin from large
to small with a linear or an exponential schedule. For all
methods, the smallest value ε was set to 20cm. The linear
and exponential strategies perform similarly and much better
than the fixed and stepwise ones, indicating that the empty-
space loss is best applied after the training process manages
to infer a good initial version of the scene structure.

B.2. Effect of exposure handling

In Tab. 5 we expand the ablation experiment in Sec. 5.5 of
the main paper, comparing our affine transformation model

12

D Avg Error↓ CD↓ Acc↑ F↑
Direct 48 1.071 1.28 0.159 0.362
Affine 0.98 1.007 0.253 0.47

Direct 4 1.049 2.062 0.247 0.477
Affine 0.885 1.564 0.262 0.524

Table 5. Exposure handling – We compare our affine transforma-
tion model with the direct input of the exposure code to the network.
Using an explicit color transformation for the different exposures
results in better reconstruction.

Geometry Texture Vertex color

Figure 10. Rendering colored meshes – After extracting a color
mesh using our model, we can render its geometry and texture in
a 3D environment, or render the vertex colors in real time on a
browser.

versus directly providing the exposure latent code to the net-
work for the Rome scene. We experiment with two different
dimensions for the latent codes, D = 48 as in NeRF-W [39]
and a much smaller one D = 4. As Tab. 5 shows, our affine
transformation approach performs better in all 3D recon-
struction metrics, for both values of D. We also observe that
both the affine and the direct approach perform better when
the exposure latent code has smaller dimensionality, thus
reduced capacity. For the direct approach this is in accor-
dance to the observations in NeRF++ [73] about the viewing
direction: implicit regularization (limiting the capacity) of
the latent code can increase the performance. For the affine
case, this indicates that there exist a compact latent space
that can describe the color transformations appearing in the
dataset and it is easier to learn.

C. Additional Qualitative Results
In Fig. 10 we show more visualizations of extracted col-

ored meshes for different scenes. The color of every vertex
is estimated by querying the radiance field network in that
particular location. This representation can be used in com-
mon 3D editing software such as Blender [11] (first and
second column in Fig. 10) and it allows for real time render-
ing on the browser, e.g. using ThreeJS [62] (third column in
Fig. 10). Note that this way of rendering is different than the
volumetric rendering in NeRF models, which is continuous

and incorporates implicitly the view dependent appearance
changes. Finally, we present additional results for novel view
synthesis in Fig. 11.

13

ZurichTaipei Rome New York Seattle

São Paulo Toledo Cape TownSt Johns Melbourne

Figure 11. Novel views

14

	. Introduction
	. Related Works
	. Review of Neural Radiance Fields

	. Data
	. Method
	. Photometric-based Losses
	Exposure compensation
	Sky modeling

	. Lidar losses

	. Experimental Evaluation
	. Evaluation Protocol
	. Baseline Methods
	. Novel View Synthesis Results
	. 3D Reconstruction Results
	. Ablation Studies
	. Qualitative results
	. Limitations

	. Conclusion
	. Additional Implementation Details
	. Network architecture
	. Training Protocol

	. Additional Ablation Studies
	. Effect of margin
	. Effect of exposure handling

	. Additional Qualitative Results

